A method to compute the associated order in Hopf Galois structures of extensions of p-adic fields

Daniel Gil Muñoz

Universitat Politècnica de Catalunya
Departament de Matemàtiques

Hopf Algebras \& Galois Module Theory Omaha, May 2020

Joint work with Anna Rio Doval
(9) Introduction

2 Determination of the associated order

- A motivating example
- Matrix of the action
- The reduction method
(3) Induced Hopf Galois structures
- Induced associated order
- An application: Dihedral extensions

Table of contents

(2) Determination of the associated order
(3) Induced Hopf Galois structures
L / K finite extension of fields, $H K$-algebra acting on L.
L / K finite extension of fields, $H K$-algebra acting on L.

$$
\begin{aligned}
\rho_{H}: \quad H & \longrightarrow \operatorname{End}_{K}(L) \\
h & \longmapsto x \mapsto h \cdot x
\end{aligned}
$$

L / K finite extension of fields, $H K$-algebra acting on L.

$$
\begin{aligned}
\rho_{H}: \quad H & \longrightarrow \operatorname{End}_{K}(L) \\
h & \longmapsto x \mapsto h \cdot x
\end{aligned}
$$

Definition

A Hopf Galois structure in L / K is a pair (H, \cdot) where H is a K-Hopf algebra and is a K-linear action of H over L such that:

1. The action • endows L with H-module algebra structure.
2. The canonical map $j=\left(1, \rho_{H}\right): L \otimes_{K} H \longrightarrow \operatorname{End}_{K}(L)$ is a K-linear isomorphism.
We also say that L / K is H-Galois.
L / K finite separable extension, \widetilde{L} Galois closure.
$G=\operatorname{Gal}(\widetilde{L} / K), G^{\prime}=\operatorname{Gal}(\widetilde{L} / L), X=G / G^{\prime}$.

$$
\begin{array}{ll}
\lambda: \quad G & \longrightarrow \operatorname{Perm}(X) \\
\sigma & \longmapsto \bar{\tau} \mapsto \overline{\sigma \tau}
\end{array}
$$

L / K finite separable extension, \widetilde{L} Galois closure.
$G=\operatorname{Gal}(\widetilde{L} / K), G^{\prime}=\operatorname{Gal}(\widetilde{L} / L), X=G / G^{\prime}$.

$$
\begin{array}{llll}
\lambda: \quad & G & \longrightarrow \operatorname{Perm}(X) \\
& \sigma & \longmapsto \bar{\tau} \mapsto \overline{\sigma \tau}
\end{array}
$$

Theorem (Greither-Pareigis)

The Hopf Galois structures of L / K are in one-to-one correspondence with regular subgroups of $\operatorname{Perm}(X)$ normalized by $\lambda(G)$.
L / K finite separable extension, \widetilde{L} Galois closure.
$G=\operatorname{Gal}(\widetilde{L} / K), G^{\prime}=\operatorname{Gal}(\widetilde{L} / L), X=G / G^{\prime}$.

$$
\begin{array}{llll}
\lambda: \quad & G & \longrightarrow \operatorname{Perm}(X) \\
& \sigma & \longmapsto \bar{\tau} \mapsto \overline{\sigma \tau}
\end{array}
$$

Theorem (Greither-Pareigis)

The Hopf Galois structures of L / K are in one-to-one correspondence with regular subgroups of $\operatorname{Perm}(X)$ normalized by $\lambda(G)$.

If N is such a subgroup, the Hopf algebra of the corresponding Hopf Galois structure is

$$
H=\widetilde{L}[N]^{G}=\{x \in \widetilde{L}[N] \mid \sigma(x)=x \text { for all } \sigma \in G\}
$$

L / K extension of p-adic fields.

L
H
\mathbb{Q}_{p}
L / K extension of p-adic fields.
(H, μ) Hopf Galois structure of L / K.

L / K extension of p-adic fields.

(H, μ) Hopf Galois structure of L / K.
L is H-free of rank one:
$\exists \alpha \in L:\{w \cdot \alpha: w \in W\} K$-basis of L, W K-basis of H.

L / K extension of p-adic fields.
(H, μ) Hopf Galois structure of L / K.
L is H-free of rank one:
$\exists \alpha \in L:\{w \cdot \alpha: w \in W\} K$-basis of L,
W K-basis of H.
$\mathcal{O}_{L} / \mathcal{O}_{K}$ extension of integer rings.

L / K extension of p-adic fields.
(H, μ) Hopf Galois structure of L / K.
L is H-free of rank one:
$\exists \alpha \in L:\{w \cdot \alpha: w \in W\} K$-basis of L,
W K-basis of H.
$\mathcal{O}_{L} / \mathcal{O}_{K}$ extension of integer rings.
The associated order of \mathcal{O}_{L} in H is

$$
\mathfrak{A}_{H}:=\left\{h \in H \mid h \cdot \mathcal{O}_{L} \subset \mathcal{O}_{L}\right\}
$$

The associated order of \mathcal{O}_{L} in H is

$$
\mathfrak{A}_{H}:=\left\{h \in H \mid h \cdot \mathcal{O}_{L} \subset \mathcal{O}_{L}\right\}
$$

Two kind of problems:

- Compute an \mathcal{O}_{K}-basis of \mathfrak{A}_{H}.
- Is $\mathcal{O}_{L} \mathfrak{A}_{H}$-free?

L / K extension of p-adic fields.
(H, μ) Hopf Galois structure of L / K.
L is H-free of rank one:
$\exists \alpha \in L:\{w \cdot \alpha: w \in W\} K$-basis of L,
W K-basis of H.
$\mathcal{O}_{L} / \mathcal{O}_{K}$ extension of integer rings.
The associated order of \mathcal{O}_{L} in H is

$$
\mathfrak{A}_{H}:=\left\{h \in H \mid h \cdot \mathcal{O}_{L} \subset \mathcal{O}_{L}\right\} .
$$

Two kind of problems:

- Compute an \mathcal{O}_{K}-basis of \mathfrak{A}_{H}.
- Is $\mathcal{O}_{L} \mathfrak{A}_{H}$-free?

Table of contents

(1) Introduction
(2) Determination of the associated order
(3) Induced Hopf Galois structures
$L=\mathbb{Q}_{3}(\alpha), \alpha$ root of $f(x)=x^{3}+3 x^{2}+3$ in $\overline{\mathbb{Q}_{3}}$.
$L=\mathbb{Q}_{3}(\alpha), \alpha$ root of $f(x)=x^{3}+3 x^{2}+3$ in $\overline{\mathbb{Q}_{3}}$.
Unique Hopf Galois structure of $L / \mathbb{Q}_{3}: H$ with \mathbb{Q}_{3}-basis

$$
w_{1}=\mathrm{Id} \quad w_{2}=\left(\sigma-\sigma^{-1}\right) z \quad w_{3}=\sigma+\sigma^{-1}
$$

where $\sigma \in \operatorname{Gal}\left(\widetilde{L} / \mathbb{Q}_{3}\right)$ is a 3-cycle and $z \in L-\mathbb{Q}_{3}, z^{2} \in \mathbb{Q}_{3}$.
$L=\mathbb{Q}_{3}(\alpha), \alpha$ root of $f(x)=x^{3}+3 x^{2}+3$ in $\overline{\mathbb{Q}_{3}}$.
Unique Hopf Galois structure of $L / \mathbb{Q}_{3}: H$ with \mathbb{Q}_{3}-basis

$$
w_{1}=\mathrm{Id} \quad w_{2}=\left(\sigma-\sigma^{-1}\right) z \quad w_{3}=\sigma+\sigma^{-1}
$$

where $\sigma \in \operatorname{Gal}\left(\widetilde{L} / \mathbb{Q}_{3}\right)$ is a 3-cycle and $z \in L-\mathbb{Q}_{3}, z^{2} \in \mathbb{Q}_{3}$.
$\mathcal{O}_{L}=\mathbb{Z}_{3}[\alpha] \Longrightarrow\left\{1, \alpha, \alpha^{2}\right\} \mathbb{Z}_{3}$-basis of \mathcal{O}_{L}.
$L=\mathbb{Q}_{3}(\alpha), \alpha$ root of $f(x)=x^{3}+3 x^{2}+3$ in $\overline{\mathbb{Q}_{3}}$.
Unique Hopf Galois structure of $L / \mathbb{Q}_{3}: H$ with \mathbb{Q}_{3}-basis

$$
w_{1}=\mathrm{Id} \quad w_{2}=\left(\sigma-\sigma^{-1}\right) z \quad w_{3}=\sigma+\sigma^{-1}
$$

where $\sigma \in \operatorname{Gal}\left(\widetilde{L} / \mathbb{Q}_{3}\right)$ is a 3-cycle and $z \in L-\mathbb{Q}_{3}, z^{2} \in \mathbb{Q}_{3}$.
$\mathcal{O}_{L}=\mathbb{Z}_{3}[\alpha] \Longrightarrow\left\{1, \alpha, \alpha^{2}\right\} \mathbb{Z}_{3}$-basis of \mathcal{O}_{L}.

	1	α	α^{2}
w_{1}	1	α	α^{2}
w_{2}	0	$27+81 \alpha+18 \alpha^{2}$	$-27-270 \alpha-81 \alpha^{2}$
w_{3}	2	$-3-\alpha$	$9-\alpha^{2}$

$$
\mathfrak{A}_{H}=\left\{h \in H \mid h \cdot x \in \mathcal{O}_{L} \text { for all } x \in \mathcal{O}_{L}\right\} .
$$

$\mathfrak{A}_{H}=\left\{h \in H \mid h \cdot x \in \mathcal{O}_{L}\right.$ for all $\left.x \in \mathcal{O}_{L}\right\}$.
For $h=\sum_{i=1}^{3} h_{i} w_{i} \in H$ and $x=\sum_{j=1}^{3} x_{j} \alpha^{j-1} \in \mathcal{O}_{L}$,
$\mathfrak{A}_{H}=\left\{h \in H \mid h \cdot x \in \mathcal{O}_{L}\right.$ for all $\left.x \in \mathcal{O}_{L}\right\}$.
For $h=\sum_{i=1}^{3} h_{i} w_{i} \in H$ and $x=\sum_{j=1}^{3} x_{j} \alpha^{j-1} \in \mathcal{O}_{L}$,

$$
\begin{aligned}
h \cdot x & =\left[x_{1}\left(h_{1}+2 h_{3}\right)+x_{2}\left(27 h_{2}-3 h_{3}\right)+x_{3}\left(-27 h_{2}+9 h_{3}\right)\right] \\
& +\left[x_{2}\left(h_{1}+81 h_{2}-h_{3}\right)+x_{3}\left(-270 h_{2}\right)\right] \alpha \\
& +\left[x_{2}\left(18 h_{2}\right)+x_{3}\left(h_{1}-81 h_{2}-h_{3}\right)\right] \alpha^{2} .
\end{aligned}
$$

$\mathfrak{A}_{H}=\left\{h \in H \mid h \cdot x \in \mathcal{O}_{L}\right.$ for all $\left.x \in \mathcal{O}_{L}\right\}$.
For $h=\sum_{i=1}^{3} h_{i} w_{i} \in H$ and $x=\sum_{j=1}^{3} x_{j} \alpha^{j-1} \in \mathcal{O}_{L}$,

$$
\begin{aligned}
h \cdot x & =\left[x_{1}\left(h_{1}+2 h_{3}\right)+x_{2}\left(27 h_{2}-3 h_{3}\right)+x_{3}\left(-27 h_{2}+9 h_{3}\right)\right] \\
& +\left[x_{2}\left(h_{1}+81 h_{2}-h_{3}\right)+x_{3}\left(-270 h_{2}\right)\right] \alpha \\
& +\left[x_{2}\left(18 h_{2}\right)+x_{3}\left(h_{1}-81 h_{2}-h_{3}\right)\right] \alpha^{2} .
\end{aligned}
$$

$\mathfrak{A}_{H}=\left\{h \in H \mid h \cdot x \in \mathcal{O}_{L}\right.$ for all $\left.x \in \mathcal{O}_{L}\right\}$.
For $h=\sum_{i=1}^{3} h_{i} w_{i} \in H$ and $x=\sum_{j=1}^{3} x_{j} \alpha^{j-1} \in \mathcal{O}_{L}$,

$$
\begin{aligned}
h \cdot x & =\left[x_{1}\left(h_{1}+2 h_{3}\right)+x_{2}\left(27 h_{2}-3 h_{3}\right)+x_{3}\left(-27 h_{2}+9 h_{3}\right)\right] \\
& +\left[x_{2}\left(h_{1}+81 h_{2}-h_{3}\right)+x_{3}\left(-270 h_{2}\right)\right] \alpha \\
& +\left[x_{2}\left(18 h_{2}\right)+x_{3}\left(h_{1}-81 h_{2}-h_{3}\right)\right] \alpha^{2} .
\end{aligned}
$$

$h \in \mathfrak{A}_{H}$ if and only if

$$
\begin{gathered}
h_{1}+2 h_{3}, \\
27 h_{2}-3 h_{3}, h_{1}+81 h_{2}-h_{3}, 18 h_{2}, \\
-27 h_{2}+9 h_{3},-270 h_{2}, h_{1}-81 h_{2}-h_{3}
\end{gathered}
$$

are 3 -adic integers.
$h \in \mathfrak{A}_{H}$ if and only if

$$
\left(\begin{array}{ccc}
1 & 0 & 2 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 27 & -3 \\
1 & 81 & -1 \\
0 & 18 & 0 \\
0 & -27 & 9 \\
0 & -270 & 0 \\
1 & -81 & -1
\end{array}\right)\left(\begin{array}{l}
h_{1} \\
h_{2} \\
h_{3}
\end{array}\right) \in \mathbb{Z}_{3}^{9}
$$

$h \in \mathfrak{A}_{H}$ if and only if

$$
\left(\begin{array}{lll}
1 & 0 & 2 \\
0 & 9 & 3 \\
0 & 0 & 6
\end{array}\right)\left(\begin{array}{l}
h_{1} \\
h_{2} \\
h_{3}
\end{array}\right) \in \mathbb{Z}_{3}^{3}
$$

$h \in \mathfrak{A}_{H}$ if and only if

$$
\left(\begin{array}{lll}
1 & 0 & 2 \\
0 & 9 & 3 \\
0 & 0 & 6
\end{array}\right)\left(\begin{array}{l}
h_{1} \\
h_{2} \\
h_{3}
\end{array}\right) \in \mathbb{Z}_{3}^{3}
$$

if and only if

$$
\left(\begin{array}{l}
h_{1} \\
h_{2} \\
h_{3}
\end{array}\right)=\frac{1}{18}\left(\begin{array}{ccc}
18 & 0 & -6 \\
0 & 2 & -1 \\
0 & 0 & 3
\end{array}\right)\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)
$$

for some $c_{1}, c_{2}, c_{3} \in \mathbb{Z}_{3}$.
$h \in \mathfrak{A}_{H}$ if and only if

$$
\left(\begin{array}{lll}
1 & 0 & 2 \\
0 & 9 & 3 \\
0 & 0 & 6
\end{array}\right)\left(\begin{array}{l}
h_{1} \\
h_{2} \\
h_{3}
\end{array}\right) \in \mathbb{Z}_{3}^{3}
$$

if and only if

$$
\left(\begin{array}{l}
h_{1} \\
h_{2} \\
h_{3}
\end{array}\right)=\frac{1}{18}\left(\begin{array}{ccc}
18 & 0 & -6 \\
0 & 2 & -1 \\
0 & 0 & 3
\end{array}\right)\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)
$$

for some $c_{1}, c_{2}, c_{3} \in \mathbb{Z}_{3}$.
$\Longrightarrow\left\{w_{1}, \frac{w_{2}}{9}, \frac{-6 w_{1}-w_{2}+3 w_{3}}{18}\right\} \mathbb{Z}_{3}$-basis of \mathfrak{A}_{H}.

L/K H-Galois of degree n.

L/K H-Galois of degree n.

$W=\left\{w_{i}\right\}_{i=1}^{n} K$-basis of $H, B=\left\{\gamma_{j}\right\}_{j=1}^{n} K$-basis of L.

L/K H-Galois of degree n.
$W=\left\{w_{i}\right\}_{i=1}^{n} K$-basis of $H, B=\left\{\gamma_{j}\right\}_{j=1}^{n} K$-basis of L.
For $1 \leq j \leq n$, set
$M_{j}(H, L):=\left(\begin{array}{cccc}\mid & \mid & \ldots & \mid \\ \left(w_{1} \cdot \gamma_{j}\right)_{B} & \left(w_{2} \cdot \gamma_{j}\right)_{B} & \ldots & \left(w_{n} \cdot \gamma_{j}\right)_{B} \\ \mid & \mid & \ldots & \mid\end{array}\right) \in \mathcal{M}_{n}(K)$,

L/K H-Galois of degree n.
$W=\left\{w_{i}\right\}_{i=1}^{n} K$-basis of $H, B=\left\{\gamma_{j}\right\}_{j=1}^{n} K$-basis of L.
For $1 \leq j \leq n$, set
$M_{j}(H, L):=\left(\begin{array}{cccc}\mid & \mid & \ldots & \mid \\ \left(w_{1} \cdot \gamma_{j}\right)_{B} & \left(w_{2} \cdot \gamma_{j}\right)_{B} & \ldots & \left(w_{n} \cdot \gamma_{j}\right)_{B} \\ \mid & \mid & \cdots & \mid\end{array}\right) \in \mathcal{M}_{n}(K)$,

Definition

The matrix of the action of H over L is defined as

$$
M(H, L)=\left(\frac{M_{1}(H, L)}{\cdots}\right) \in \mathcal{M}_{n^{2} \times n}(K)
$$

Alternative definition of $M(H, L)$:

Alternative definition of $M(H, L)$:
Let $\varphi: \mathcal{M}_{n}(K) \longrightarrow K^{n^{2}}$ the map that carries matrices to columns of vectors.

Alternative definition of $M(H, L)$:
Let $\varphi: \mathcal{M}_{n}(K) \longrightarrow K^{n^{2}}$ the map that carries matrices to columns of vectors.

$$
\text { If } n=2, \varphi\left(\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)\right)=\left(\begin{array}{c}
a_{11} \\
a_{21} \\
a_{12} \\
a_{22}
\end{array}\right) .
$$

Alternative definition of $M(H, L)$:
Let $\varphi: \mathcal{M}_{n}(K) \longrightarrow K^{n^{2}}$ the map that carries matrices to columns of vectors.
If $n=2, \varphi\left(\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)\right)=\left(\begin{array}{l}a_{11} \\ a_{21} \\ a_{12} \\ a_{22}\end{array}\right)$.
$\rho_{H}: H \longrightarrow \mathcal{M}_{n}(K)$ linear representation, $\rho_{H}\left(w_{i}\right) \equiv w_{i}$.

Alternative definition of $M(H, L)$:
Let $\varphi: \mathcal{M}_{n}(K) \longrightarrow K^{n^{2}}$ the map that carries matrices to columns of vectors.
If $n=2, \varphi\left(\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)\right)=\left(\begin{array}{l}a_{11} \\ a_{21} \\ a_{12} \\ a_{22}\end{array}\right)$.
$\rho_{H}: H \longrightarrow \mathcal{M}_{n}(K)$ linear representation, $\rho_{H}\left(w_{i}\right) \equiv w_{i}$.
Then, the matrix of the action is defined as:

$$
M(H, L):=\left(\begin{array}{cccc}
\mid & \mid & \ldots & \mid \\
\varphi\left(w_{1}\right) & \varphi\left(w_{2}\right) & \ldots & \varphi\left(w_{n}\right) \\
\mid & \mid & \ldots & \mid
\end{array}\right) \in \mathcal{M}_{n}(K)
$$

Example

In the motivating example,

Example

In the motivating example,

$$
\begin{gathered}
M_{1}(H, L)=\left(\begin{array}{lll}
1 & 0 & 2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \\
M_{2}(H, L)=\left(\begin{array}{lll}
0 & 27 & -3 \\
1 & 81 & -1 \\
0 & 18 & 0
\end{array}\right) \\
M_{3}(H, L)=\left(\begin{array}{ccc}
0 & -27 & 9 \\
0 & -270 & 0 \\
1 & -81 & -1
\end{array}\right)
\end{gathered}
$$

Example

In the motivating example,

$$
\begin{aligned}
M_{1}(H, L) & =\left(\begin{array}{lll}
1 & 0 & 2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \\
M_{2}(H, L) & =\left(\begin{array}{ccc}
0 & 27 & -3 \\
1 & 81 & -1 \\
0 & 18 & 0
\end{array}\right) \\
M_{3}(H, L) & =\left(\begin{array}{ccc}
0 & -27 & 9 \\
0 & -270 & 0 \\
1 & -81 & -1
\end{array}\right)
\end{aligned}
$$

Proposition

Suppose that $B=\left\{\gamma_{j}\right\}_{j=1}^{n}$ is an \mathcal{O}_{K}-basis of \mathcal{O}_{L}. Given $h \in H$,

$$
h \in \mathfrak{A}_{H} \Longleftrightarrow M(H, L) h \in \mathcal{O}_{K}^{n^{2}}
$$

Proposition

Suppose that $B=\left\{\gamma_{j}\right\}_{j=1}^{n}$ is an \mathcal{O}_{K}-basis of \mathcal{O}_{L}. Given $h \in H$,

$$
h \in \mathfrak{A}_{H} \Longleftrightarrow M(H, L) h \in \mathcal{O}_{K}^{n^{2}}
$$

Definition

A reduced matrix of $M(H, L)$ is a matrix D such that there is some unimodular matrix $U \in \mathcal{M}_{n}\left(\mathcal{O}_{K}\right)$ such that

$$
U M(H, L)=\binom{D}{O}
$$

Definition

A reduced matrix of $M(H, L)$ is a matrix D such that there is some unimodular matrix $U \in \mathcal{M}_{n}\left(\mathcal{O}_{K}\right)$ such that

$$
U M(H, L)=\left(\frac{D}{O}\right)
$$

Definition

A reduced matrix of $M(H, L)$ is a matrix D such that there is some unimodular matrix $U \in \mathcal{M}_{n}\left(\mathcal{O}_{K}\right)$ such that

$$
U M(H, L)=\binom{D}{O}
$$

Equivalently, if

$$
M(H, L)=d M, d \in K, M \in \mathcal{M}_{n}\left(\mathcal{O}_{K}\right)
$$

then $D=d \Phi$ with $U M=\binom{\Phi}{O}$

Proposition

The reduced matrix of $M(H, L)$ always exists.

Proposition

The reduced matrix of $M(H, L)$ always exists.

Corollary

Let D be a reduced matrix of $M(H, L)$. Given $h \in H$,

$$
h \in \mathfrak{A}_{H} \text { if and only if } D h \in \mathcal{O}_{K}^{n} .
$$

Proposition

The reduced matrix of $M(H, L)$ always exists.

Corollary

Let D be a reduced matrix of $M(H, L)$. Given $h \in H$,

$$
h \in \mathfrak{A}_{H} \text { if and only if } D h \in \mathcal{O}_{K}^{n} .
$$

Theorem (G., Rio)

Let D be a reduced matrix of $M(H, L)$ and call $D^{-1}=\left(d_{i j}\right)_{i, j=1}^{n}$. The elements

$$
v_{i}=\sum_{l=1}^{n} d_{l i} w_{l}, 1 \leq i \leq n
$$

form an \mathcal{O}_{K}-basis of \mathfrak{A}_{H}.

Example

In the motivating example:

- $D=\left(\begin{array}{lll}1 & 0 & 2 \\ 0 & 9 & 3 \\ 0 & 0 & 6\end{array}\right)$ is a reduced matrix of $M(H, L)$.
- The inverse is $D^{-1}=\frac{1}{18}\left(\begin{array}{ccc}18 & 0 & -6 \\ 0 & 2 & -1 \\ 0 & 0 & 3\end{array}\right)$.
- \mathfrak{A}_{H} has a basis formed by

$$
v_{1}=w_{1} \quad v_{2}=\frac{w_{2}}{9} \quad v_{3}=\frac{-6 w_{1}-w_{2}+3 w_{3}}{18}
$$

L/K H-Galois extension of p-adic fields.

L/K H-Galois extension of p-adic fields.

Reduction method

W K-basis of $H, B \mathcal{O}_{K}$-basis of \mathcal{O}_{L}.

L/K H-Galois extension of p-adic fields.
Reduction method
W K-basis of $H, B \mathcal{O}_{K}$-basis of \mathcal{O}_{L}.

1. Determine the matrix of the action $M(H, L)$.

L/K H-Galois extension of p-adic fields.

Reduction method

W K-basis of $H, B \mathcal{O}_{K}$-basis of \mathcal{O}_{L}.

1. Determine the matrix of the action $M(H, L)$.
2. Decompose $M(H, L)=d M, d \in K, M \in \mathcal{M}_{n}\left(\mathcal{O}_{K}\right)$.

L/K H-Galois extension of p-adic fields.
Reduction method
W K-basis of $H, B \mathcal{O}_{K}$-basis of \mathcal{O}_{L}.

1. Determine the matrix of the action $M(H, L)$.
2. Decompose $M(H, L)=d M, d \in K, M \in \mathcal{M}_{n}\left(\mathcal{O}_{K}\right)$.
3. Find an unimodular matrix U such that $U M$ is a square matrix Φ and zero rows (for instance, Hermite normal form).

L/K H-Galois extension of p-adic fields.
Reduction method
W K-basis of $H, B \mathcal{O}_{K}$-basis of \mathcal{O}_{L}.

1. Determine the matrix of the action $M(H, L)$.
2. Decompose $M(H, L)=d M, d \in K, M \in \mathcal{M}_{n}\left(\mathcal{O}_{K}\right)$.
3. Find an unimodular matrix U such that $U M$ is a square matrix Φ and zero rows (for instance, Hermite normal form).
4. Compute the inverse of $D=d \Phi$. Its columns form an \mathcal{O}_{K}-basis of \mathfrak{A}_{H}.

Some remarks:

Some remarks:

- If D is a reduced matrix of $M(H, L), D$ is a change basis matrix from a basis of \mathfrak{A}_{H}.

Some remarks:

- If D is a reduced matrix of $M(H, L), D$ is a change basis matrix from a basis of \mathfrak{A}_{H}.
- Consequently, D^{-1} is also a change basis matrix that provides the desired basis.

Some remarks:

- If D is a reduced matrix of $M(H, L), D$ is a change basis matrix from a basis of \mathfrak{A}_{H}.
- Consequently, D^{-1} is also a change basis matrix that provides the desired basis.
- The reduction method provides a basis of \mathfrak{A}_{H} from a basis of \mathcal{O}_{L}.

Some remarks:

- If D is a reduced matrix of $M(H, L), D$ is a change basis matrix from a basis of \mathfrak{A}_{H}.
- Consequently, D^{-1} is also a change basis matrix that provides the desired basis.
- The reduction method provides a basis of \mathfrak{A}_{H} from a basis of \mathcal{O}_{L}.
- If we perform the reduction method with a basis of \mathfrak{A}_{H}, we obtain as reduced matrix the identity.

Table of contents

(1) Introduction
(2) Determination of the associated order
(3) Induced Hopf Galois structures

L / K Galois extension with group of the form

$$
\begin{array}{r}
G=J \rtimes G^{\prime}, \\
J \unlhd G, G^{\prime} \leq G . \text { Let } L_{1}=L^{G^{\prime}}, L_{2}=L^{J} .
\end{array}
$$

L / K Galois extension with group of the form

L / K Galois extension with group of the form

$$
G=J \rtimes G^{\prime}
$$

$$
J \unlhd G, G^{\prime} \leq G . \text { Let } L_{1}=L^{G^{\prime}}, L_{2}=L^{J}
$$

L / K Galois extension with group of the form

$$
G=J \rtimes G^{\prime},
$$

$J \unlhd G, G^{\prime} \leq G$. Let $L_{1}=L^{G^{\prime}}, L_{2}=L^{J}$.

$$
r:=\left[L_{1}: K\right], s:=\left[L: L_{1}\right] .
$$

Theorem (Crespo, Rio, Vela)

If $N_{1} \leq S_{r}$ gives L_{1} / K a H-G structure and $N_{2} \leq S_{s}$ gives L / L_{1} a H-G structure, then $N:=N_{1} \times N_{2} \leq S_{n}$ gives L / K a $H-G$ structure.
L / K Galois extension with group of the form

$$
G=J \rtimes G^{\prime},
$$

$J \unlhd G, G^{\prime} \leq G$. Let $L_{1}=L^{G^{\prime}}, L_{2}=L^{J}$.

$$
r:=\left[L_{1}: K\right], s:=\left[L: L_{1}\right] .
$$

Theorem (Crespo, Rio, Vela)
If $N_{1} \leq S_{r}$ gives L_{1} / K a H-G structure and $N_{2} \leq S_{s}$ gives L / L_{1} a H-G structure, then $N:=N_{1} \times N_{2} \leq S_{n}$ gives L/K a H-G structure.
L / K Galois extension with group of the form

$$
G=J \rtimes G^{\prime}
$$

$J \unlhd G, G^{\prime} \leq G$. Let $L_{1}=L^{G^{\prime}}, L_{2}=L^{J}$.

$$
r:=\left[L_{1}: K\right], s:=\left[L: L_{1}\right] .
$$

Theorem (Crespo, Rio, Vela)
If $N_{1} \leq S_{r}$ gives L_{1} / K a H-G structure and $N_{2} \leq S_{s}$ gives L / L_{1} a H-G structure, then $N:=N_{1} \times N_{2} \leq S_{n}$ gives L/K a H-G structure.

Lemma

There is a one-to-one correspondence between the Hopf Galois structures of L / L_{1} and the Hopf Galois structures of L_{2} / K.

Lemma

There is a one-to-one correspondence between the Hopf Galois structures of L / L_{1} and the Hopf Galois structures of L_{2} / K.

$$
G^{\prime} \cong G / J \Longrightarrow \operatorname{Perm}\left(G^{\prime}\right) \cong \operatorname{Perm}(G / J)
$$

Lemma

There is a one-to-one correspondence between the Hopf Galois structures of L / L_{1} and the Hopf Galois structures of L_{2} / K.

$$
G^{\prime} \cong G / J \Longrightarrow \operatorname{Perm}\left(G^{\prime}\right) \cong \operatorname{Perm}(G / J)
$$

$$
N_{2} \leq \operatorname{Perm}\left(G^{\prime}\right) \longleftrightarrow N_{2} \leq \operatorname{Perm}(G / J)
$$

Lemma

There is a one-to-one correspondence between the Hopf Galois structures of L / L_{1} and the Hopf Galois structures of L_{2} / K.

$$
G^{\prime} \cong G / J \Longrightarrow \operatorname{Perm}\left(G^{\prime}\right) \cong \operatorname{Perm}(G / J)
$$

$$
N_{2} \leq \operatorname{Perm}\left(G^{\prime}\right) \longleftrightarrow N_{2} \leq \operatorname{Perm}(G / J)
$$

Lemma

There is a one-to-one correspondence between the Hopf Galois structures of L / L_{1} and the Hopf Galois structures of L_{2} / K.

$$
\begin{aligned}
& G^{\prime} \cong G / J \Longrightarrow \operatorname{Perm}\left(G^{\prime}\right) \cong \operatorname{Perm}(G / J) \\
& N_{2} \leq \operatorname{Perm}\left(G^{\prime}\right) \longleftrightarrow N_{2} \leq \operatorname{Perm}(G / J)
\end{aligned}
$$

Proposition (G., Rio)

H is an induced Hopf Galois structure of L / K if and only if

$$
H=H_{1} \otimes_{K} H_{2},
$$

where H_{1} is a Hopf Galois structure of L_{1} / K and H_{2} is a Hopf Galois structure of L_{2} / K.

L/K H-Galois extension of fields.

L/K H-Galois extension of fields.

$$
H=H_{1} \otimes_{K} H_{2} \text { induced. }
$$

$L / K H$-Galois extension of fields.

$H=H_{1} \otimes_{K} H_{2}$ induced.

- What is the relation between $M(H, L)$, $M\left(H_{1}, L_{1}\right)$ and $M\left(H_{2}, L_{2}\right)$?
$L / K H$-Galois extension of p-adic fields.

$H=H_{1} \otimes_{K} H_{2}$ induced.
- What is the relation between $M(H, L)$, $M\left(H_{1}, L_{1}\right)$ and $M\left(H_{2}, L_{2}\right)$?
$L / K H$-Galois extension of p-adic fields.

$H=H_{1} \otimes_{K} H_{2}$ induced.
- What is the relation between $M(H, L)$, $M\left(H_{1}, L_{1}\right)$ and $M\left(H_{2}, L_{2}\right)$?
- Is it true that $\mathfrak{A}_{H}=\mathfrak{A}_{H_{1}} \otimes \mathcal{O}_{K} \mathfrak{A}_{H_{2}}$?

L/K H-Galois extension of p-adic fields.

$H=H_{1} \otimes_{K} H_{2}$ induced.

- What is the relation between $M(H, L)$, $M\left(H_{1}, L_{1}\right)$ and $M\left(H_{2}, L_{2}\right)$?
- Is it true that $\mathfrak{A}_{H}=\mathfrak{A}_{H_{1}} \otimes \mathcal{O}_{K} \mathfrak{A}_{H_{2}}$?

Definition

The Kronecker product of two matrices $A=\left(a_{i j}\right)$ and B is the matrix defined by blocks as

$$
A \otimes B=\left(a_{i j} B\right)
$$

Theorem (G., Rio)

When in L we consider the product of the bases of L_{1} and L_{2}, there is a permutation matrix (hence unimodular) $P \in \operatorname{GL}_{n^{2}}\left(\mathcal{O}_{K}\right)$ such that

$$
P M(H, L)=M\left(H_{1}, L_{1}\right) \otimes M\left(H_{2}, L_{2}\right) .
$$

Theorem (G., Rio)

When in L we consider the product of the bases of L_{1} and L_{2}, there is a permutation matrix (hence unimodular) $P \in \mathrm{GL}_{n^{2}}\left(\mathcal{O}_{K}\right)$ such that

$$
P M(H, L)=M\left(H_{1}, L_{1}\right) \otimes M\left(H_{2}, L_{2}\right) .
$$

Definition

A K-basis of L with the property of the previous result is called induced.

Theorem (G., Rio)

When in L we consider the product of the bases of L_{1} and L_{2}, there is a permutation matrix (hence unimodular)
$P \in \mathrm{GL}_{n^{2}}\left(\mathcal{O}_{K}\right)$ such that

$$
P M(H, L)=M\left(H_{1}, L_{1}\right) \otimes M\left(H_{2}, L_{2}\right) .
$$

Definition

A K-basis of L with the property of the previous result is called induced.

- The product of the fixed K-bases of L_{1} and L_{2} is induced.

Theorem (G., Rio)

When in L we consider the product of the bases of L_{1} and L_{2}, there is a permutation matrix (hence unimodular)
$P \in \operatorname{GL}_{n^{2}}\left(\mathcal{O}_{K}\right)$ such that

$$
P M(H, L)=M\left(H_{1}, L_{1}\right) \otimes M\left(H_{2}, L_{2}\right) .
$$

Definition

A K-basis of L with the property of the previous result is called induced.

- The product of the fixed K-bases of L_{1} and L_{2} is induced.
- If L_{1} / K and L_{2} / K are arithmetically disjoint, the product of their fixed integral bases is an integral induced basis.

Theorem (G., Rio)

If L / K has some integral induced basis, then

$$
\mathfrak{A}_{H}=\mathfrak{A}_{H_{1}} \otimes \mathcal{O}_{K} \mathfrak{A}_{H_{2}} .
$$

Theorem (G., Rio)

If L / K has some integral induced basis, then

$$
\mathfrak{A}_{H}=\mathfrak{A}_{H_{1}} \otimes \otimes_{\mathcal{O}_{K}} \mathfrak{A}_{H_{2}} .
$$

Corollary

If L_{1} / K and L_{2} / K are arithmetically disjoint, then

$$
\mathfrak{A}_{H}=\mathfrak{A}_{H_{1}} \otimes \otimes_{\mathcal{O}_{K}} \mathfrak{A}_{H_{2}} .
$$

Theorem (G., Rio)

If L / K has some integral induced basis, then

$$
\mathfrak{A}_{H}=\mathfrak{A}_{H_{1}} \otimes \mathcal{O}_{K} \mathfrak{A}_{H_{2}} .
$$

Theorem (G., Rio)

If L / K has some integral induced basis, then

$$
\mathfrak{A}_{H}=\mathfrak{A}_{H_{1}} \otimes \mathcal{O}_{K} \mathfrak{A}_{H_{2}} .
$$

Sketch of proof:

Theorem (G., Rio)

If L / K has some integral induced basis, then

$$
\mathfrak{A}_{H}=\mathfrak{A}_{H_{1}} \otimes_{\mathcal{O}_{K}} \mathfrak{A}_{H_{2}} .
$$

Sketch of proof:
$P M(H, L)=M\left(H_{1}, L_{1}\right) \otimes M\left(H_{2}, L_{2}\right)$ for some unimodular P.

Theorem (G., Rio)

If L / K has some integral induced basis, then

$$
\mathfrak{A}_{H}=\mathfrak{A}_{H_{1}} \otimes_{\mathcal{O}_{K}} \mathfrak{A}_{H_{2}} .
$$

Sketch of proof:
$P M(H, L)=M\left(H_{1}, L_{1}\right) \otimes M\left(H_{2}, L_{2}\right)$ for some unimodular P.
D is a reduced matrix of $M(H, L)$
D is a reduced matrix of $M\left(H_{1}, L_{1}\right) \otimes M\left(H_{2}, L_{2}\right)$.

Theorem (G., Rio)

If L / K has some integral induced basis, then

$$
\mathfrak{A}_{H}=\mathfrak{A}_{H_{1}} \otimes_{\mathcal{O}_{K}} \mathfrak{A}_{H_{2}} .
$$

Sketch of proof:
$P M(H, L)=M\left(H_{1}, L_{1}\right) \otimes M\left(H_{2}, L_{2}\right)$ for some unimodular P.
D is a reduced matrix of $M(H, L)$
D is a reduced matrix of $M\left(H_{1}, L_{1}\right) \otimes M\left(H_{2}, L_{2}\right)$.
D_{i} reduced matrix of $M\left(H_{i}, L_{i}\right), i \in\{1,2\} \Longrightarrow$
$D_{1} \otimes D_{2}$ reduced matrix of $M\left(H_{1}, L_{1}\right) \otimes M\left(H_{2}, L_{2}\right)$.

Theorem (G., Rio)

If L / K has some integral induced basis, then

$$
\mathfrak{A}_{H}=\mathfrak{A}_{H_{1}} \otimes_{\mathcal{O}_{K}} \mathfrak{A}_{H_{2}} .
$$

Sketch of proof:
$P M(H, L)=M\left(H_{1}, L_{1}\right) \otimes M\left(H_{2}, L_{2}\right)$ for some unimodular P.
D is a reduced matrix of $M(H, L)$
D is a reduced matrix of $M\left(H_{1}, L_{1}\right) \otimes M\left(H_{2}, L_{2}\right)$.
D_{i} reduced matrix of $M\left(H_{i}, L_{i}\right), i \in\{1,2\} \Longrightarrow$
$D_{1} \otimes D_{2}$ reduced matrix of $M(H, L)$

Theorem (G., Rio)

If L / K has some integral induced basis, then

$$
\mathfrak{A}_{H}=\mathfrak{A}_{H_{1}} \otimes_{\mathcal{O}_{K}} \mathfrak{A}_{H_{2}} .
$$

Sketch of proof:
$P M(H, L)=M\left(H_{1}, L_{1}\right) \otimes M\left(H_{2}, L_{2}\right)$ for some unimodular P.
D is a reduced matrix of $M(H, L)$
D is a reduced matrix of $M\left(H_{1}, L_{1}\right) \otimes M\left(H_{2}, L_{2}\right)$.
D_{i} reduced matrix of $M\left(H_{i}, L_{i}\right), i \in\{1,2\} \Longrightarrow$
$D_{1} \otimes D_{2}$ reduced matrix of $M(H, L)$
$\left(D_{1} \otimes D_{2}\right)^{-1}=D_{1}^{-1} \otimes D_{2}^{-1}$

Theorem (G., Rio)

If L / K has some integral induced basis, then

$$
\mathfrak{A}_{H}=\mathfrak{A}_{H_{1}} \otimes_{\mathcal{O}_{K}} \mathfrak{A}_{H_{2}} .
$$

Sketch of proof:
$P M(H, L)=M\left(H_{1}, L_{1}\right) \otimes M\left(H_{2}, L_{2}\right)$ for some unimodular P.
D is a reduced matrix of $M(H, L)$
D is a reduced matrix of $M\left(H_{1}, L_{1}\right) \otimes M\left(H_{2}, L_{2}\right)$.
D_{i} reduced matrix of $M\left(H_{i}, L_{i}\right), i \in\{1,2\} \Longrightarrow$
$D_{1} \otimes D_{2}$ reduced matrix of $M(H, L)$
$\left(D_{1} \otimes D_{2}\right)^{-1}=D_{1}^{-1} \otimes D_{2}^{-1} \Longrightarrow \mathfrak{A}_{H}=\mathfrak{A}_{H_{1}} \otimes \mathcal{O}_{K} \mathfrak{A}_{H_{2}}$.

L / \mathbb{Q}_{3} dihedral extension of degree 6.

L / \mathbb{Q}_{3} dihedral extension of degree 6.

The induced Hopf Galois structures of L / \mathbb{Q}_{3} are the ones of type C_{6}.

L / \mathbb{Q}_{3} dihedral extension of degree 6.

The induced Hopf Galois structures of L / \mathbb{Q}_{3} are the ones of type C_{6}.

L / \mathbb{Q}_{3} dihedral extension of degree 6.

The induced Hopf Galois structures of L / \mathbb{Q}_{3} are the ones of type C_{6}.

L_{1} / \mathbb{Q}_{3} totally ramified degree 3
L_{2} / \mathbb{Q}_{3} tamely ramified degree 2

L / \mathbb{Q}_{3} dihedral extension of degree 6.

The induced Hopf Galois structures of L / \mathbb{Q}_{3} are the ones of type C_{6}.

L is the splitting field over \mathbb{Q}_{3} of one of the polynomials:

- $x^{3}+3$
- $x^{3}+12$
- $x^{3}+21$
- $x^{3}+3 x^{2}+3$
- $x^{3}+3 x+3$
L_{1} / \mathbb{Q}_{3} totally ramified degree 3
L_{2} / \mathbb{Q}_{3} tamely ramified degree 2

L / \mathbb{Q}_{3} dihedral extension of degree 6.

The induced Hopf Galois structures of L / \mathbb{Q}_{3} are the ones of type C_{6}.

L_{1} / \mathbb{Q}_{3} totally ramified degree 3 L_{2} / \mathbb{Q}_{3} tamely ramified degree 2
L is the splitting field over \mathbb{Q}_{3} of one of the polynomials:

- $x^{3}+3$
- $x^{3}+12$
- $x^{3}+21$
- $x^{3}+3 x^{2}+3$
- $x^{3}+3 x+3$
- $x^{3}+6 x+3$

f splitting polynomial of L / \mathbb{Q}_{3}.

f splitting polynomial of L / \mathbb{Q}_{3}.

1. If $f(x)=x^{3}+a, \boldsymbol{a} \in\{3,12,21\}$, then L / \mathbb{Q}_{3} has an integral induced basis and $\mathfrak{A}_{H}=\mathfrak{A}_{H_{1}} \otimes_{\mathbb{Z}_{3}} \mathfrak{A}_{H_{2}}$.

f splitting polynomial of L / \mathbb{Q}_{3}.

1. If $f(x)=x^{3}+a, \boldsymbol{a} \in\{3,12,21\}$, then L / \mathbb{Q}_{3} has an integral induced basis and $\mathfrak{A}_{H}=\mathfrak{A}_{H_{1}} \otimes_{\mathbb{Z}_{3}} \mathfrak{A}_{H_{2}}$.
2. If $f(x)=x^{3}+3 x^{2}+3$, then L_{1} / \mathbb{Q}_{3} and L_{2} / \mathbb{Q}_{3} are arithmetically disjoint and $\mathfrak{A}_{H}=\mathfrak{A}_{H_{1}} \otimes_{\mathbb{Z}_{3}} \mathfrak{A}_{H_{2}}$.

f splitting polynomial of L / \mathbb{Q}_{3}.

1. If $f(x)=x^{3}+a, \boldsymbol{a} \in\{3,12,21\}$, then L / \mathbb{Q}_{3} has an integral induced basis and $\mathfrak{A}_{H}=\mathfrak{A}_{H_{1}} \otimes_{\mathbb{Z}_{3}} \mathfrak{A}_{H_{2}}$.
2. If $f(x)=x^{3}+3 x^{2}+3$, then L_{1} / \mathbb{Q}_{3} and L_{2} / \mathbb{Q}_{3} are arithmetically disjoint and $\mathfrak{A}_{H}=\mathfrak{A}_{H_{1}} \otimes_{\mathbb{Z}_{3}} \mathfrak{A}_{H_{2}}$.
3. If $f(x)=x^{3}+a x+3, \boldsymbol{a} \in\{3,6\}$, then $\mathfrak{A}_{H} \neq \mathfrak{A}_{H_{1}} \otimes_{\mathbb{Z}_{3}} \mathfrak{A}_{H_{2}}$ (it is not even a tensor product).
S.U. Chase, M.E. Sweedler; Hopf Algebras and Galois Theory, Lecture Notes in Mathematics, Springer, 1969.
L.N. Childs; Taming Wild Extensions: Hopf Algebras and Local Galois Module Theory, Mathematical Surveys and Monographs 80, American Mathematical Society, 1986

围 T. Crespo, A. Rio, M. Vela; Induced Hopf Galois structures, Journal of Algebra 457 (2016), 312-322.
C. Awtrey, T. Edwards; Dihedral p-adic fields of prime degree, International Journal of Pure and Applied Mathematics Vol. 752 (2012), 185-194

Thank you for your attention

